<u>Unit IV</u>

Solid State Physics

1	At absolute zero, Si acts as?		d) Diamond < silicon < germanium
	a) non-metal b) metal	9	Energy band formation is prominent in
	c) insulator d) none of these		a) Solids
			b) Liquids
2	Carbon, Silicon and Germanium atoms have four		c) Gases
	valence electrons each. Their valence and		d) All the above
	conduction bands are separated by energy band		
	gaps represented by $(E_g)_{C}$, $(E_g)_{Si}$ and $(E_g)_{Ge}$	10	Elements in gaseous state give rise to
	respectively. Which one of the following		spectrum.
	relationship is true in their case?		a) band
	a) $(E_g)_C > (E_g)_{Si}$ b) $(E_g)_C < (E_g)_{Si}$		b) line
	c) $(E_g)_c = (E_g)_{Si}$ d) $(E_g)_c < (E_g)_{Ge}$		c) continuous
			d) all the above
3	The forbidden energy gap in an insulator is		
	a) > 6 eV b)< 6 eV	11	Elements in crystalline solid give rise to
	c) 1 eV d) 4 eV		spectrum.
			a) band
4	In an insulator, the number of electrons in the		b) line
	valence shell in general is		c) continuous
	a) less than 4		d) all the above
	b) more than 4		
	c) equal to 4	12	In solids there is significant interaction between
	d) none of these		electrons of different atoms.
			a) innermost
5	Energy band gap size for semiconductors is in		b) free
	the range eV.		c) outermost
	a) 1-2 b) 2-3		d) all the above
	c) 3-4 d) > 4	10	hand contains from all strong
		13	
6	Energy band gap size for insulators is in the		a) Valence
	range eV.		c) Earbidden
	a) 1-2 b) 2-3		d) Both valence and conduction
	c) 3-4 d) 3-6		
7	Not an ovample for intrinsic comisseductor	14	
1	a) Si b) Al		a) Valence
	a) Si D) Al		b) Conduction
			c) Forbidden
0	Which is the correct ordering of the hand gaps		d) Both valence and conduction
0	within the group 14 elements?		e)
	a) Diamond > silicon < germanium	15	band does not contain electrons.
	h) Diamond > silicon > germanium		a) Valence
	c) Diamond < silicon > germanium		b) Conduction
		'	

	c) Forbidden		c) good conductor
	d) Both valence and conduction		d) any of the above
16	Electrons exist in	22	An operate band is
10	c) Velence hand	25	All ellergy balluis
	a) valence band		a) a set of closely areas d allowed an array levels
	b) Conduction band		b) a set of closely spaced allowed energy levels
	c) Forbidden band		c) a set of widely spaced allowed energy levels
	d) Both valence and conduction band		d) none of the above
			e)
17	If N atoms are brought close together to form a	24	What is the origin of energy bands in solids?
	solid, the s energy band can accommodate		a) Atomic mass
	electrons.		b) Temperature
	a) N b) 2 N c) 6 N d) 8 N		c) Closely packed periodic structure of solid
			d) Atomic number of atoms in solid
18	If <i>N</i> atoms are brought close together to form a	25	Which of the following decides electrical
	electrons		properties of a solid?
			a) Electronic configuration
			b) Interatomic distance
10			c) Both Electronic configuration and
19	If the outermost energy band in a solid is		Interatomic distance
	partially filled, the solid will be		d) Neither Electronic configuration nor
	a) insulator		Interatomic distance
	b) semiconductor		
	c) good conductor	26	Valence hand in a metal contains
	d) any of the above	20	a) free electrons
			b) holes
20	If the outermost energy band in a solid is		c) valence electrons
	completely filled, the solid will be		d) both holes and valence electrons
	a) insulator		
	b) semiconductor	27	Valance hand in a comisenductor contains
	c) good conductor	27	
	d) either insulator or semiconductor		
			a) Holes
21	If the outermost energy band in a solid is		b) Valence electrons
	completely filled and the energy difference with		c) Both holes and valence electrons
	the next energy band is small, the solid will be		
	a) insulator	28	Conduction band in a metal contains
	b) semiconductor		a) free electrons
	c) good conductor		b) holes
	d) any of the above		c) valence electrons
			d) both holes and valence electrons
22	If the outermost energy band in a solid is		
	completely filled and the energy difference with	29	Conduction band in a semiconductor contains
	the next energy band is large, the solid will be		
			a) Free electrons
	a) insulator		b) Holes
	b) semiconductor		c) Valence electrons
I	-,	I	

Engineering Physics UNIT 4: Semiconductor Physics

	d) Both holes and valence electrons		
		39	There is no forbidden band in
30	The energy gap in good conductors is		a) good conductor
	a) 0 b) ~ 1 eV c) ~ 5 eV		b) semiconductor
	d) none of th above		c) insulators
			d) both semiconductors and insulators
21	The energy gap in insulators is		
51	a = 0 $b = 1 eV$ $c = 5 eV$ d	10	The hand gan energy in Silicon is
	a b) iev c) sev u)	40	
22		-	b) 0.7 eV
32	The energy gap in semiconductors is		
			d) 5 EV
	c) ~ 5 eV d) none of the above		
		41	The band gap energy in Germanium is
33	Which of the following has maximum band gap		a) 0
	energy ?		b) 0.7 eV
	a) Tin b) Silicon		c) 1.1 eV
	c) Germanium d) Carbon in diamond form		d) 5 eV
34	Which of the following has minimum band gap	42	Which of the following is not a semiconductor?
	energy ?		a) Silicon
	a) Tin b) Silicon c) Germanium		b) Germanium
	b) Carbon in diamond form		c) GaAs
	c)		d) Carbon
35	Pure semiconductors are known as		
	a) intrinsic	43	Valence band of a semiconductor at 0 K will be
	b) doped		
	c) extrinsic		a) completely filled
	d) compound		b) partially filled
	, ,		c) completely empty
36	Impure semiconductors are known as	-	d) either completely filled or completely empty
	a) intrinsic		
	b) doned	44	Valence hand of a semiconductor at
	c) extrinsic		temperatures above 0 K will be
	d) compound		a) completely filled
			b) partially filled
27	The dopor impurity levels lie		c) completely empty
57	a) just above the valence hand		d) either completely filled or completely omnty
	a) just above the valence band		d) entre completely filled of completely empty
	b) just below the conduction band	45	Conduction hand of a consistent ductor at 0 K will
	c) at the centre of forbidden band	45	Conduction band of a semiconductor at 0 K will
	a) just above the conduction band		De
26			a) completely filled
38	The acceptor impurity levels lie		b) partially filled
	a) just above the valence band		c) completely empty
	b) just below the conduction band		a) either completely filled or completely empty
	c) at the centre of forbidden band		
	d) just above the conduction band	46	Conduction band of a semiconductor at

47	temperatures above 0 K will be a) completely filled b) partially filled c) completely empty d) either completely filled or completely empty The classical free electron theory of metals was initiated by a) Pauli b) Summerfield c) Lorentz and Drude d) Fermi-Dirac	53	 b) Maxwell-Boltzmann c) Fermi-Dirac d) Bose-Einstein Identical particles for which the spin is an odd integer multiple of half which can not be distinguished from one another obey distribution for energy. a) Binomial b) Maxwell-Boltzmann c) Fermi-Dirac
48	 According to classical free electron theory the electrons follow distribution of energy. a) Binomial b) Maxwell-Boltzmann c) Fermi-Dirac d) Bose-Einstein 	54	 d) Bose-Einstein According to classical free electron theory the electrons in absence of external electric field. a) remain at rest b) move randomly
49	 According to quantum free electron theory the electrons follow distribution of energy. a) binomial b) Maxwell-Boltzmann c) Fermi-Dirac d) Bose-Einstein 	55	c) have drift velocity d) none of the above Average kinetic energy $(\overline{E_0})$ of a free electron gas at 0 K is a) $\frac{2}{5}E_F$ b) $\frac{5}{2}E_F$ c) $\frac{3}{5}E_F$
50	 According to classical free electron theory the electrons in absence of external electric field. a) remain at rest b) move randomly c) have drift velocity d) none of the above 	56	d) E_F Which of the following, when added as an impurity, into the Silicon, produces n-type semi conductor a) Phosphorous b) Aluminum c) Magnesium d) both (b' and (c'
51	 Identical particles which are so far apart that they can be distinguished and their wave functions do not overlap obey distribution for energy. a) Binomial b) Maxwell-Boltzmann c) Fermi-Dirac d) Bose-Einstein 	57	When arsenic is added as an impurity to Silicon, the resulting material is a) n-type semiconductor b) p-type semiconductor c) n-type conductor e) Insulator f)
52	Identical particles with zero or integer spins with overlapping wavefunctions which can not be distinguished obey distribution for energy. a) Binomial	58	To obtain a p-type germanium semiconductor, it must be doped with? a) Arsenic b) Antimony c) Indium d) Phosphorus Which of the following when added acts as an

60	 impurity into silicon produced n-type semi conductor? a) P b) Al c) B d) Mg A semiconductor is doped with donor impurity is 		c) Produced when phosphorous is added as an impurity to silicond) None of the above
	a) p type b) n type c)npn type d)pnp type	68 A n a	A long specimen of <i>p</i> -type semiconductor material: a) Is positively charged
61	One serious drawback of semiconductors is a) they are costly b) they pollute the environment c) they do not last for long time		 c) Has an electric field directed along its length d) None of the above
	d) they can't withstand high voltage	69	When N-type semiconductor is heated, a) number of free electrons increases while that
62	 in a p type semiconductor, the acceptor valence band is a) above the conduction band of the host crystal b) below the conduction band of the crystal c) above the valence band of the crystal d) below the conduction band of the crystal 		of holes decreases b) number of holes increases while that of electrons decreases c) number of electrons and holes remain same d) number of electron and holes increases equally
63	In intrinsic semiconductors, number of free electrons is number of holes. a) Equal to b) Greater than c) Less than d) Can not define	70	A piece of copper and other of germanium are cooled from the room temperature to 80K, then a) resistance of each will increase b) resistance of copper will decrease c) the resistance of copper will increase while
64	In <i>n</i> -type semiconductors, number of holes is number of free electrons. a) Equal to b) Greater than c) Less than d) Can not define	=	that of germanium will decrease d) the resistance of copper will decrease while that of germanium will increase
65	In <i>p</i> -type semiconductors, number of holes is number of free electrons. a) Equal to b) Greater than c) Less	71	At low temperature, the resistivity of a metal is proportional to a) T^2 b) T c) T^5 d) $T^{1/2}$
	than d) I wice	72 The in insulat	The intrinsic semiconductor becomes an insulator at
66	n-type semiconductors are: a) Negatively charged b) Produced when Indium is added as an		a) 0°C b) 0K c) 300K d) —100°C
	impurity to Germanium c) Produced when phosphorous is added as an impurity to silicon d) None of the above	73	In semiconductors at a room temperature a) the conduction band is completely empty b) the valence band is partially empty and the conduction band is partially filled c) the valence band is completely filled and the
67	 <i>p</i>-type semiconductors are: a) Negatively charged b) Produced when Indium is added as an impurity to Germanium 		conduction band is partially filled d) the valence band is completely filled
I		74	Choose the only false statement from the

	following. a) in conductors the valence and conduction bands may overlap.		c) 10 ⁻¹⁰ (Ω-m) ⁻¹ d) 10 ⁻⁸ (Ω-m) ⁻¹
	b) Substances with energy gap of the order of 5 eV are insulators.c) The resistivity of a semiconductor increases with increase in temperature.	81	Unit for electric field strength is a) A/cm ² b) mho/meter c) cm ² /V.s d) V/cm
75	d) The conductivity of a semiconductor increases with increase in temperature.	82	Flow of electrons is affected by the following a) Thermal vibrations b) Impurity atoms c) Crystal defects d) all
75	what is the conductivity of semiconductor if free electron density = 5×10^{12} /cm ³ and hole density = 8×10^{13} /cm ³ ? [μ_e = 2.3 and μ_h = 0.01 in SI units] a) 5.634 b) 1.968 c) 3.421 d) 8.964	83	Mobility of holes is mobility of electrons in intrinsic semiconductors. a) Equal to b) Greater than c) Less than d) Can not define
76	ifference in the variation of resistance with temperature in a metal arises essentially due to the difference in a. type of bonding b. crystal structure c. scattering mechanism with temperature d. number of charge carriers with temperature	84	The conductivity of an intrinsic semiconductor is given by (symbols have the usual meanings): a) $\sigma_i = en_i^2 (\mu_n - \mu_p)$ b) $\sigma_i = en_i (\mu_n - \mu_p)$ c) $\sigma_i = en_i (\mu_n + \mu_p)$ d) None of the above
77	The difference in the variation of resistance with temperature in semiconductor arises essentially due to the difference in a) type of bonding b) crystal structure c) scattering mechanism with temperature d)number of charge carriers with temperature	85	 In an intrinsic semiconductor, the mobility of electrons in the conduction band is: a) Less than the mobility of holes in the valence band b) Zero c) Greater than the mobility of holes in the valence band d) None of the above
78	Resistance of a semiconductor a) increases with temperature b) decreases with temperature c) remains unaffected with temperature d) none of these	86	If the drift velocity of holes under a field gradient of 100 V/m is 5m/s, the mobility (in the same SI units)is a) 0.05 b) 0.55 c) 500
79	The temperature coefficient of the resistance of semiconductors is always a) positive b) negative c) zero d) infinite	87	d) None of the above The electron and hole concentrations in a intrinsic semiconductor are n_i and p_i respectively. When doped with a <i>p</i> -type
80	Electrical conductivity of insulators is of the order of a) $10^{-10}(\Omega$ -mm) ⁻¹ b) $10^{-10}(\Omega$ -cm) ⁻¹		material, these change to <i>n</i> and <i>p</i> , respectively. Then: a) $n + p = n_i + p_i$ b) $n + n_i = p + p_i$

	c) $n_p = n_i p_i$ d) None of the above		d) Both semiconductors and insulators
		94	Resistivity increases with increase in
88	If the temperature of an extrinsic semiconductor		temperature for
	is increased so that the intrinsic carrier		a) Good conductors
	concentration is doubled. then:		b) Semiconductors
	a) The minority carrier density doubles		c) Insulators
	b) The majority carrier density doubles		d) Both semiconductors and insulators
	c) Both majority and minority carrier densities		
	double	95	Resistivity decreases with increase in
	d) None of the above	55	temperature for
			a) Good conductors
80	At room temperature, the current in an intrinsic		b) Semiconductors
89	comiconductor is due to		c) Insulators
			 c) Insulators d) Dath comission ductors and insulators
	a) Floatrong		d) Both semiconductors and insulators
	b) Electrons	00	lf a consistendo atomia turano ante ta lialet of
	d) None of the obsue	96	If a semiconductor is transparent to light of
	d) None of the above		wavelength greater than Λ , the band gap energy
			will be
90	The mobility is given by (notations have their		a) $\frac{hl}{h}$ b) $\frac{hc}{c}$ c) $\frac{h}{c}$ d) $\frac{lc}{c}$
	usual meaning):		c l h
	a) $\mu = v_0 / E_0$		
	b) $\mu = v_0/E_0^{-1}$	97	If the band gap energy of a semiconductor is E _g
	c) $\mu = v_0^{-}/E_0$,the material will be
	d) None of the above		hc
			a) transparent to wavelength greater than $\frac{1}{F}$
91	In a <i>p</i> -type semiconductor, the conductivity due		L_g
	to holes (σ_p) is equal to (e is the charge of hole,		b) one que to wavelength greater than $\frac{hc}{m}$
	μ_p is the hole mobility, p_0 is the hole		E_{σ}
	concentration):		bc s
	a) $p_0.e/\mu_p$		c) transparent to wavelength less than $\frac{nc}{r}$
	b) $\mu_p/p_0.e$		E_g
	c) $p_0.e.\mu_p$		d) none of the above
	d) None of the above		
		98	Which of the following have a positive
92	Near room temperature, resistivity is maximum		temperature coefficient of resistance?
	for		a) Good conductor
	a) Good conductors		b) Semiconductor
	b) Semiconductors		c) Insulators
	c) Insulators		d) Both semiconductors and insulators
	d) Both semiconductors and insulators		
		99	Which of the following have a negative
93	Near room temperature, resistivity is minimum		temperature coefficient of resistance?
	for		a) Good conductor
	a) Good conductors		b) Semiconductor
	b) Semiconductors		c) Insulators
	c) Insulators		d) Both semiconductors and insulators

			c) both free electrons and holes
100	Conduction in intrinsic semiconductors is due to		d) neither free electrons nor holes
	a) only free electrons	107	The charge carriers in p - type semiconductors
	b) only holes		are
	c) both free electrons and holes		a) free electrons
	d) positive and negative ions		b) holes
			c) both free electrons and holes
101	If a free electron moves towards right and		d) neither free electrons nor holes
101	combines with a hole, the hole		
	a) moves towards right	108	The charge carriers in n - type semiconductors
	h) moves towards left	100	are
	c) remains at the same place		a) free electrons
	d) is neutralized		b) boles
	u) is neutralized		c) both free electrons and heles
102	If a bound electron movies towards right and		d) poither free electrons and holes
102	in a bound electron moves towards right and		
	complines with a noie, the noie	100	
	a) moves towards right	109	The majority charge carriers in p - type
	b) moves towards left		semiconductors are
	c) remains at the same place		a) free electrons
	d) is neutralized		b) holes
			c) both free electrons and holes
103	In an electric field, an electron initially at rest will		a) neither free electrons nor holes
	move	110	
	a) In the direction of electric field	110	The majority charge carriers in n - type
	b) opposite to the direction of electric field		semiconductors are
	c) perpendicular to the direction of electric		a) free electrons
	Tield		b) noies
101	d) none of the above		c) both free electrons and holes
104	In an electric field, a hole initially at rest will		a) neither free electrons nor holes
	move		
	a) in the direction of electric field	111	The resistance of a conductor of unit length and
	b) opposite to the direction of electric field		unit cross section area is known as
	c) perpendicular to the direction of electric		a) resistivity
	field		b) conductivity
	d) none of the above		c) resistance
			d) conductance
105	Mobility of holes is that of free electrons.		
	a) more than	112	The reciprocal of resistivity is
	b) less than		a) resistivity
	c) equal to		b) conductivity
	d) can be more or less than		c) resistance
			d) conductance
106	The charge carriers in intrinsic semiconductors		
	are	113	The reciprocal of resistance is
	a) free electrons		a) resistivity
	b) holes		b) conductivity

114The amount of charge flowing through unit cross section area per unit time is known as a) current density c) conductance d) resistancea) $I_e + I_h$ b) $I_e - I_h$ c) $\frac{I_e}{I_h}$ d) $\frac{I_e}{I_h}$ 115The amount of charge flowing through any cross section area per unit time is known as a) current b)current density c) conductance d) resistance121The equation for current density is $J = \cdots$ a) nev_d b) $neav_d$ c) nea d) none of the above116Current in a semiconductor can be due to a) electric field b) density gradient of charge carriers c) both electric field and density gradient of charge carriers d) either electric field or density gradient of charge carriers123If an electric field of 10 V / m is applied to r Germanium in which the mobility of free electrons will be		c) resistance d) conductance		current due to holes in a semiconductor under the influence of an external electric field, the total current is
115The amount of charge flowing through any cross section area per unit time is known as a) current b)current density c) conductance d) resistance121The equation for current density is $J = \cdots$ a) nev_d b) $neav_d$ c) nea d) none of the above115The amount of charge flowing through any cross section area per unit time is known as a) current b)current density c) conductance d) resistance122The equation for current is $I = \cdots$ a) nev_d b) $neav_d$ c) nea d) r 	114	The amount of charge flowing through unit cross section area per unit time is known as a) current		a) $I_e + I_h$ b) $I_e - I_h$ c) $\frac{I_e}{I_h}$ d) $\frac{I_h}{I_e}$
1113The anitotic of charge froming introduction area per unit time is known as a) current b)current density c) conductance d) resistance122The equation for current is $I = \cdots$ a) nev_d b) $neav_d$ c) nea d) r of the above116Current in a semiconductor can be due to a) electric field b) density gradient of charge carriers 	115	 b) current density c) conductance d) resistance 	121	The equation for current density is $J = \cdots$ a) nev_d b) $neav_d$ c) nea d) none of the above
116Current in a semiconductor can be due to a) electric field123If an electric field of 10 V / m is applied to <i>r</i> Germanium in which the mobility of free electrons is 3800 cm² / V-s, the drift velocit electrons is 3800 cm² / V-s, the drift velocit electrons will be	115	 a) current b)current conductance d) resistance 	122	The equation for current is $I = \cdots$ a) nev_d b) $neav_d$ c) nea d) none of the above
117The unit for resistivity is a) ohm b) ohm / m c) ohm-m d) mho / m124If an electric field of 10 V / m applied to <i>p</i> -t Germanium gives rise to a drift velocity of 1 / s for the holes, the mobility of holes is 	116	 Current in a semiconductor can be due to a) electric field b) density gradient of charge carriers c) both electric field and density gradient of charge carriers d) either electric field or density gradient of charge carriers 	123	If an electric field of 10 V / m is applied to <i>n</i> -type Germanium in which the mobility of free electrons is 3800 cm ² / V-s, the drift velocity of electrons will bem/s. a) 38000 b) 38 c) 3.8 d) 0.38
118The unit for conductivity is a) ohm b) ohm / m c) ohm-m d) mho / m125A small concentration of minority carriers is injected into a homogeneous semiconductor crystal at one point. An electric field of 10 V is applied across the crystal and this moves minority carrier a distance of 1 cm in 20 µse The mobility (in cm²/volt.sec) is: a) 10000 b) 20000 c) 50 d)119Which of the following equations for mobility is correct? a) $m = \frac{V_d}{E}$ 126If the electrical resistivity of Ti is 4.3×10^{-7} what is the resistance of a 0.85 m long piece 	117	The unit for resistivity is a) ohm b) ohm / m c) ohm-m d) mho / m	124	If an electric field of 10 V / m applied to <i>p</i> -type Germanium gives rise to a drift velocity of 1.7 m / s for the holes, the mobility of holes is cm ² / V-s. a) 1.7 b) 17 c) 170 d) 1700
correct? a) $M = \frac{v_d}{E}$ a) $M = \frac{v_d}{E}$ a) $M = \frac{v_d}{E}$ b) $M = \frac{v_d}{E}$ b) $M = \frac{v_d}{E}$ correct? b) $M = \frac{v_d}{E}$ correct? corre	118	The unit for conductivity is a) ohm b) ohm / m c) ohm-m d) mho / m Which of the following equations for mobility is	125	A small concentration of minority carriers is injected into a homogeneous semiconductor crystal at one point. An electric field of 10 V/cm is applied across the crystal and this moves the minority carrier a distance of 1 cm in 20 μsec. The mobility (in cm ² /volt.sec) is: a) 10000 b) 20000 c) 50 d) 100
b) $m = \frac{S}{ne}$ a) 0.18Ω b) 5.47Ω c) 0.25Ω d) 3		correct? a) $M = \frac{V_d}{E}$ b) $M = \frac{S}{ne}$	126	If the electrical resistivity of Ti is $4.3 \times 10^{-7} \Omega$ m, what is the resistance of a 0.85 m long piece of wire of cross section 2.0×10^{-6} m ² ? a) 0.18 Ω b) 5.47 Ω c) 0.25 Ω d) 3.95 Ω
c) $m = \frac{1}{ner}$ d) All the above 120 If l_e is the current due to electrons and l_h is the d) l_h is the current due to electrons and l_h is the	120	c) $M = \frac{1}{ner}$ d) All the above If I_e is the current due to electrons and I_b is the	127	 The effective mass of an electron is negative a) near the bottom of conduction band b) near the top of valence band c) in the valence band d) in the forbidden band

			a) $E > E_F$ b) $E < E_F$ c) $E = E_F$
128	The effective mass is same as its mass for		d) $E \gg E_{E}$
	a) near the bottom of conduction band		, F
	b) near the top of valence band	136	Fermi energy level for intrinsic semiconductors
	c) in the valence band	130	lies
	d) in the forbidden band		a) At middle of the hand gap
			a) At midule of the band gap
129	The effective mass of an electron is positive		b) Close to volonce hand
			c) Close to valence band
	a) near the bottom of conduction band		a) None
	b) near the top of valence band		
	c) in the valence hand	137	Fermi energy level for <i>p</i> -type extrinsic
	d) in the forbidden hand		semiconductors lies
	aj in the forbidden band		a) At middle of the band gap
120	The Formi Dirac probability distribution function		b) Close to conduction band
130			c) Close to valence band
	1		d) None
	$P(E) = \frac{1}{(E - E)^{1/2}}$		
	a) $1 + e^{(E-E_F)/kT}$	138	Fermi energy level for <i>n</i> -type extrinsic
	P(T) = 1		semiconductors lies
	b) $P(E) = \frac{1}{1 + e^{(E_F - E)/kT}}$		a) At middle of the band gap
	1		b) Close to conduction band
	$P(E) = \frac{1}{(E-E)/E}$		c) Close to valence band
	$e^{(E-E_F)/kI}$		d) None
	d) $P(F) = 1$		
	$(L) = \frac{1}{1 - e^{(E - E_F)/kT}}$	139	Fermi level for extrinsic semiconductor depends
			on
131	The value of Fermi Function at OK for $E < E_F$ is		a) Donor element
	· · · · · · · · · · · · · · · · · · ·		b) Impurity concentration
	a) 0 b) 1 c) 0.5 d) 0.75		c) Temperature
			d) All
132	The value of Fermi Function at 0K for E > E _F is		
		140	The density states of electrons between the
	a) 0 b) 1 c) 0.5 d) 0.75		energy range E and E + dE is proportional to
			a) $E^{1/2}$ b) E^2 c) E d) $E^{3/2}$
133	The value of Fermi Function at $T > 0K$ for $F = F_{r}$ is		. , - ,
		141	When we increase the temperature of extrinsic
	a) 0 b) 1 c) 0.5 d) 0.75		semiconductor, after a certain temperature it
			behaves like
134	The probability that an electron in a metal		a) an insulator
1.24	occupies the Fermi-level at any temperature (50		b) an intrinsic semiconductor
	K) ic		c) a conductor
	a = b + 1 $b = b + 1$		d) a superconductor
	d) none of the above		
		142	In a n-type semiconductor the Fermi level at OK
125	The value of Fermi-distribution function at		is
122	The value of Lemi-distribution fullction at $a_{L} = 0$ ($T = 0$ ($L = 0$) is 1 i.e. $E(E) = 1$ under		a) between valence hand and accentor levels
	absolute zero ($i = OK$) is 1, i.e. $F(E) = 1$, under		h) between accentor levels and intrinsic Formi
	the condition	I	b) between acceptor levels and intrinsic Fermi

c) between intrinsic Fermi level and donor level d) between donor level and conduction band 143 In a p-type semiconductor, the Fermi level at 0K is
d) between donor level and conduction band149The Fermi level shiftsin n-type semiconductor with increase in impurity concentration.143In a p-type semiconductor, the Fermi level at OK is149The Fermi level shiftsin n-type semiconductor with increase in impurity concentration.143In a p-type semiconductor, the Fermi level at OK isa) between valence band and acceptor levels b) between acceptor levels and intrinsic Fermi levelb) downwards c) neither upward nor downward d) none of the above144In a n-type semiconductor, the Fermi level at T > OK is150The Fermi level shifts in p-type semiconductor with increase in impurity concentration.144In a n-type semiconductor, the Fermi level at T > OK is000between valence band and acceptor levels b) between acceptor levels and intrinsic Fermi level150The Fermi level shifts in p-type semiconductor with increase in impurity concentration.144In a n-type semiconductor, the Fermi level at T > OK isa) Upwards b) downwards c) neither upward nor downwards d) none of the above
143 In a p-type semiconductor, the Fermi level at 0K concentration. a) between valence band and acceptor levels b) b) between valence band and acceptor levels b) c) between intrinsic Fermi level and donor level c) d) between donor level and conduction band c) 144 In a n-type semiconductor, the Fermi level at T > The Fermi level shifts in p-type semiconductor, the Fermi level at T > a) between acceptor levels and intrinsic Fermi level at T > a) OK is
 a) between valence band and acceptor levels b) between acceptor levels and intrinsic Fermi level c) between intrinsic Fermi level and donor level d) between donor level and conduction band 144 In a n-type semiconductor, the Fermi level at T > OK is
b) between acceptor levels and intrinsic Fermi levelc) neither upward nor downward d) none of the abovec) between intrinsic Fermi level and donor level d) between donor level and conduction bandc) The Fermi level shifts in p-type semiconductor with increase in impurity concentration.144In a n-type semiconductor, the Fermi level at T > OK isThe Fermi level at T > oK isa) between valence band and acceptor levels b) between acceptor levels and intrinsic Fermi levelDwards d) none of the above
c) between intrinsic Fermi level and donor level d) between donor level and conduction band 144 In a n-type semiconductor, the Fermi level at T > 0K is a) between valence band and acceptor levels b) between acceptor levels and intrinsic Fermi level b) between acceptor levels and intrinsic Fermi level
d) between donor level and conduction band150The Fermi level shiftsin p-type semiconductor with increase in impurity concentration.144In a n-type semiconductor, the Fermi level at T > OK is150The Fermi level shiftsin p-type semiconductor with increase in impurity concentration.a) between valence band and acceptor levels b) between acceptor levels and intrinsic Fermi level150The Fermi level shiftsin p-type semiconductor with increase in impurity concentration.a) between valence band and acceptor levels b) between acceptor levels and intrinsic Fermi levela) upwards d) none of the above
144 In a n-type semiconductor, the Fermi level at T > concentration. 0K is a) between valence band and acceptor levels b) between acceptor levels and intrinsic Fermi level c) neither upward nor downward c) none of the above
OK is a) between valence band and acceptor levels a) Upwards b) downwards b) between acceptor levels and intrinsic Fermi level a) none of the above
 a) between valence band and acceptor levels b) between acceptor levels and intrinsic Fermi level c) neither upward nor downward d) none of the above
b) between acceptor levels and intrinsic Fermi d) none of the above level
1 A how a statistic for the statistic
c) between intrinsic Fermi level and donor level 151 A p-n junction is said to be forward biased,
d) between donor level and conduction band when
a) the positive pole of the battery is joined to the
145 In a p-type semiconductor, the Fermi level at T > p-semiconductor and negative pole to the n-semiconductor 0K is 0K is
a) between valence band and acceptor levels b) the positive pole of the battery is joined to
b) between acceptor levels and intrinsic Fermi the n-semiconductor and negative pole of the
level battery is joined to the p-semiconductor
c) between intrinsic Fermi level and donor level c) the positive pole of the battery is connected
d) between donor level and conduction bandto n- semiconductor and p- semiconductord) a mechanical force is applied in the forward
146 The Fermi level shifts in p-type direction
semiconductor with increase in temperature.
a) upwards 152 The depletion layer in the P-N junction region
b) downwards is caused by?
c) neither upward nor downward (a) drift of holes
b) diffusion of charge carriers
c) migration of impurity ions
d) drift of electrons
a) upwards
b) downwards
series circuit with a battery and a resistance. A
d) none of the above
the polarity of the battery is reversed, the
148 The Fermi level shifts in intrinsic
semiconductor with increase in temperature.
a) upwards
b) downwards
c) neither upward nor downward

154	The cause of the potential barrier in a p-n diode is ?		b) lowers the potential barrierc) raises the potential barrier
	 a) Depletion of positive charges near the junction 		d) increases the majority carrier current
	 b) Concentration of positive charges near the junction c) Depletion of negative charges near the junction d) Concentration of positive and negative charges near the junction 	162	 Application of a forward bias to a p—n junction a) widens the depletion zone. b) increases the potential difference across the depletion zone. c) increases the number of donors on the n side. d) increases the electric field in the depletion
155	In forward bias, the width of potential barrier in a p-n junction diode?		zone.
	a) increasesb) decreasesc) remains constantd) first increases then decreases	163	On increasing the reverse bias to a large value in pn junction diode the current: a) Increases slowly b) remains fixed
156	A depletion layer consists of? a)electrons b) protons c)mobile ions d) immobile ions		c) Suddenly increases d) decreases slowly
157	The part of depletion layer in the p-type contains 	164	The number of charge carriers increases with increase in temperature in n-type semiconductor. a) minority b) majority c) both minority and majority
158	The part of depletion layer in the n-type contains a) holes b) positive ions	165	a) neither minority nor majority The number of charge carriers
	c) free electrons d) negative ions	i	increases with increase in temperature in p-type semiconductor.
159	In a junction diode, the holes are due to a) protons b) extra electrons c) neutrons d) missing electrons		a) minority b) majority c) both minority and majority d) neither minority nor majority
160	 In an unbiased p-n junction a) The potential of the p and n sides becomes higher alternately b) The p side is at higher electrical potential than the n side c) The n side is at higher electrical potential than the p side d) Both the p and p sides are at the same 	166	 The electrical resistance of depletion layer is large because: a) it has no charge carriers b) it has large number of charge carriers c) it contains electrons as charge carriers d) it has holes as charge carriers
	potential	167	In forward biased p-n junction the current is of the order of
161	Reverse bias applied to a junction diode a) increases the minority carrier current		c) microampere d)nanoampere

168	 When p-n junction diode is reverse biased the flow of current across the junction is mainly due to a) diffusion of charges b) depends on nature of material c) drift of charges d) both drift and diffusion of charges The number of charge carriers increases with increase in light incident on n-type comisonductor 	175	 a) more in n-type b) more in p-type c) same in both d) none of the above The potential difference across an open circuited p-n junction is known as a) knee voltage b) cut-in-voltage c) potential barrier d) none of the above 				
170	 a) minority b) majority c) both minority and majority d) neither minority nor majority The number of charge carriers increases with increase in in light incident on p-	176	 The dominant mechanism for motion of charge carriers in forward and reverse biased silicon p-i junction are a) drift in both forward and reverse bias b) diffusion in both forward and reverse c) diffusion in forward and drift in reverse d) drift in forward and diffusion in reverse 				
171	 type semiconductor. a) minority b) majority c) both minority and majority d) neither minority nor majority Application of forward bias to the p-n junction a) increases the number of denors on p cide 	177	If V_B is the barrier potential, the energy difference between the conduction bands of n- type and p-type in open circuited p-n junction diode is a) eV_B b) $\frac{V_B}{e}$ c) $e+V_B$				
172	 increases the number of donors on inside increases electric field in depletion region increases potential difference across the depletion region widens the depletion zone Vithin depletion region of the p-n junction diode p side is positive and n side is negative p side is negative and n side is positive both sides are either positive or negative both sides are peutral 	178	d) $e - V_B$ If V_B is the barrier potential and V is the applied voltage, the energy difference between the conduction bands of n-type and p-type in forward biased p-n junction diode is a) eV_B b) $eV_B + eV$ c) $eV_B - eV$ d) $V - V_B$ If V_B is the barrier potential and V is the				
173	Barrier potential of p-n junction does not depend on a) temperature b) forward bias c) reverse bias d) diode design		applied voltage, the energy difference between the conduction bands of n-type and p-type in reverse biased p-n junction diode is a) eV_B b) $eV_B + eV$ c) $eV_B - eV$ d) $V - V_B$				
174	For the same electric field and density of doping in two identical semiconductors, one p-type and the other n-type, the current will be	180	Under equilibrium conditions in a p-n junction, the Fermi level in n-type is at level than/as that in p-type. a) higher				

	b) lower		c) electrons in p-type and holes in n-type
	c) same		d) holes in p-type and electrons in n-type
	d) none of the above		
181	 When forward bias is applied to a p-n junction diode, the Fermi level in n-type with respect to the Fermi level in p-type. a) rises b) falls c) remains at the same level d) initially rises and then falls 	187	 the recombination of electron hole pairs in a forward biased GaAs diode gives rise to radiation. a) visible b) infra red c) ultra violet d) microwave
		188	The depletion layer opposes the flow of
182	 When reverse bias is applied to a p-n junction diode, the Fermi level in n-type with respect to the Fermi level in p-type. a) rises b) falls 		 a) majority charge carriers b) minority charge carriers c) both minority and majority charge carriers d) neither minority nor majority charge carriers
	c) remains at the same leveld) initially rises and then falls	189	The part of a transistor, which is heavily doped to produce large number of majority carriers, i a) emitter b) base
183	When forward bias voltage is applied to a p-n junction diode, the width of the depletion layer		c) collector d) any of the above depending upon the nature of transistor
	a) increases b) decreases	190	When a n-p-n transistor is used as an amplifier then?
	d) initially increases and then decreases		 a) the electrons flow from emitter to collector b) the holes flow from emitter to collector c) the electrons flow from collector to emitter
184	When reverse bias voltage is applied to a p-n junction diode, the width of the depletion		d) the electrons flow from battery to emitter
	 layer a) increases b) decreases c) remains constant d) initially increases and then decreases 	191	If a transistor is to work as an amplifier, the emitter-base junction must be a) forward biased b) reversed biased c) not be biased d) any of the above
185	 In a forward biased diode, the conduction is mainly due to a) electrons b) holes c) electrons in p-type and holes in n-type d) holes in p-type and electrons in n-type 	192	 If a transistor is to work as an amplifier, the collector-base junction must be a) forward biased b) reversed biased c) not be biased
			d) any of the above
186	In a reverse biased diode, the conduction is mainly due to a) electrons b) holes	193	In an n-p-n transistor,electrons from emitter get neutralized in base. a) a large number of

194	 b) very few c) all d) none of the The concentration of impurities in a transistor : a) equal for emitter, base and collector 		 a) in the direction of current b) opposite to direction of current c) either in or opposite to direction of current d) perpendicular to direction of current 					
195	 b) least for emitter region c) largest for emitter region d) largest for collector region In an n-p-n transistor,electrons from 		 In Hall effect voltage is developed a) in the direction of current b) opposite to direction of current c) either in or opposite to direction of current d) perpendicular to direction of current 					
105	emitter cross over to collector. a) a large number of b) very few c) all d) none of the	202	If an electron moves along positive x axis and a magnetic field is applied in positive y direction, the electron will experience a force along					
196	 a blased n-p-n transistor, the Fermi level of emitterwith respect to that in base. a) remains at the same level b) shifts upwards c) shifts downwards d) first shifts up and then down 	203	c) positive x d)negative x If a hole moves along positive x axis and a magnetic field is applied in positive y direction, the hole will experience a force along					
197	 In a biased n-p-n transistor, the Fermi level of collectorwith respect to that in base. a) remains at the same level b) shifts upwards c) shifts downwards 		 a) positive Z b) negative Z c) positive X d) negative X 					
198	 d) first shifts up and then down The base of transistor is made thin and lightly doped because a) about 95% of the charge carriers may cross b) about 100% of the charge carriers may cross c) the transistors can be saved from large 	204	The Hall voltage is given by $V_H =$ a) $\frac{IBd}{nqa}$ b) $\frac{Bd}{Inqa}$ c) $\frac{IqBd}{na}$ d) $\frac{IBad}{nq}$					
199	currents d) none of these The Hall Effect voltage in intrinsic silicon is:	205	The Hall coefficient is given by $R_H =$ a) nq b) $\frac{1}{nq}$ c) $\frac{n}{q}$ d) $\frac{q}{n}$					
200	 a) Positive b) Zero c) None of the above d) Negative In Hall effect, the magnetic field is applied 	206	 The Hall effect is used to determine a) polarity of majority charge carriers b) density of charge carriers c) mobility of charge carriers d) all the above 					
I		I	1					

207	The Hall coefficient of an intrinsic semiconductor	213	The Hall coefficient of (A) at room temperature
	is:		s 4×10^{-4} m ³ coulomb ⁻¹ . The carrier concentration
	a) Positive under all conditions		h sample A at room temperature is: $x^{21} = x^{3}$
	b) Negative under all conditions		a) $\sim 10^{21} \text{ m}^3$
	c) Zero under all conditions		b) $\sim 10^{22} \text{ m}^3$
	d) None of the above		c) $\sim 10^{-1} \text{ m}^{-1}$
208	If the Hall coefficient of a material is 1.25×10^{-11}		d) None of the above
200	m ³ /C and charge of an electron is 1.6×10^{-19} C.	214	The generation of an e.m.f. across an open
	the density of electron is per m ³ .		circuited p-n junction when light is made
	a) 2×10 ²⁹ b) 4×10 ²⁹ c) 5×10 ²⁹		incident on it is known aseffect.
	d) 2×10 ²⁴		a) photoemissive
			b) photoconductive
209	Hall effect is observed in a specimen when it		c) photovoltaic
	(metal or a semiconductor) is carrying current		d) none of the above
	and is placed in a magnetic field. The resultant		
	electric field inside the specimen will be in:	215	The output from a solar cell is
	a) A direction normal to both current and		a) a.c.
	magnetic field		b) d.c.
	b) The direction of current		c) can be either a.c. or d.c.
	 d) None of the above 		d) none of the above
	uj none of the above	216	A solar cell consists of
210	When n_1 and n_2 are electron and hole densities	210	a) alkali metal
210	and μ_{a} and μ_{a} are the carrier mobilities, the Hall		b) pure semiconductor
	coefficient is positive when		c) an extrinsic semiconductor
	a) $n_h \mu_h > n_e \mu_e$		d) p-n junction
	b) $n_h \mu_h^2 > n_e \mu_e^2$		
	c) n _h µ _h <n<sub>eµ_h</n<sub>	217	When the load resistance connected across the
	d) None of the above		solar cell is infinite, we get
			a) open circuit current
211	Measurement of Hall coefficient in a		b) open circuit voltage
	semiconductor provides information on the:		c) short circuit current
	a) Sign and mass of charge carriers		d) short circuit voltage
	b) Mass and concentration of charge carriers	240	
	 c) Sign and concentration of charge carriers 	218	when the load resistance connected across the
	u) sign and concentration of charge carriers		solar cell is zero, we get
212	Hall coefficient is given by the relation		a) open circuit voltage
212			c) short circuit current
	a) $R_{H} = -neJ$ b) $R_{H} = -\frac{1}{2}$		d) short circuit voltage
	ne 1	219	Ideal diode equation is,
	c) $R_{\mu} = -\frac{1}{2}$ d) $R_{\mu} = \frac{-1}{2}$		a) $I_0 = I \left(e^{KT} \cdot 1 \right)$
	Jne "ne		
			$D I = I_0 (e^{KT} + 1)$ e^{V_F}
			c) I = I ₀ ($e\overline{k}\overline{r}$ -1)
			d) $1 = I_0 (e^{\frac{e \nabla F}{KT}} - 1)$
		l	

Unit IV											
	·			1	Answ	er Key		J		1	
Q. No	ANS	Q. No.	ANS	Q.No.	ANS	Q.No.	ANS	Q.No.	Ans	Q.No.	ANS
1.	С	41.	b	81.	d	121.	а	161.	С	201.	d
2.	а	42.	d	82.	d	122.	b	162.	С	202.	b
3.	b	43.	а	83.	С	123.	С	163.	С	203.	а
4.	С	44.	b	84.	С	124.	d	164.	С	204.	а
5.	а	45.	С	85.	С	125.	b	165.	С	205.	b
6.	d	46.	b	86.	а	126.	а	166.	а	206.	d
7.	b	47.	С	87.	d	127.	b	167.	b	207.	d
8.	b	48.	b	88.	а	128.	а	168.	С	208.	С
9.	а	49.	С	89.	С	129.	а	169.	С	209.	а
10.	b	50.	b	90.	а	130.	а	170.	С	210.	а
11.	а	51.	b	91.	С	131.	b	171.	b	211.	d
12.	С	52.	d	92.	С	132.	а	172.	b	212.	d
13.	b	53.	С	93.	а	133.	С	173.	d	213.	С
14.	а	54.	b	94.	а	134.	С	174.	b	214.	С
15.	С	55.	С	95.	d	135.	b	175.	С	215.	b
16.	d	56.	а	96.	b	136.	а	176.	а	216.	d
17.	b	57.	а	97.	а	137.	С	177.	а	217.	b
18.	С	58.	С	98.	а	138.	b	178.	С	218.	С
19.	С	59.	а	99.	d	139.	d	179.	b	219.	С
20.	d	60.	b	100.	b	140.	а	180.	С		
21.	b	61.	d	101.	d	141.	b	181.	а		
22.	а	62.	с	102.	b	142.	d	182.	b		
23.	b	63.	а	103.	b	143.	а	183.	b		
24.	С	64.	С	104.	а	144.	с	184.	а		
25.	С	65.	b	105.	b	145.	b	185.	d		
26.	а	66.	с	106.	с	146.	а	186.	с		
27.	d	67.	b	107.	С	147.	b	187.	а		
28.	а	68.	b	108.	С	148.	С	188.	а		
29.	а	69.	d	109.	b	149.	а	189.	а		
30.	а	70.	d	110.	а	150.	b	190.	а		
31.	С	71.	С	111.	а	151.	а	191.	а		
32.	b	72.	b	112.	b	152.	b	192.	b		
33.	d	73.	b	113.	d	153.	а	193.	b		
34.	а	74.	с	114.	b	154.	d	194.	С		
35.	а	75.	b	115.	а	155.	b	195.	а		
36.	С	76.	C	116.	С	156.	d	196.	b		
37.	b	77.	d	117.	C	157.	d	197.	С		
38.	а	78.	b	118.	d	158.	b	198.	а		
39.	a	79.	b	119.	d	159	d	199	b		
40	 	80	a	120	A	160	<u>َ</u>	200	h		
40.	٠ ۲	00.	u	120.	u	100.	J	200.	v	1	